COMMUTATIVE LOCAL RINGS OF BOUNDED MODULE TYPE
نویسندگان
چکیده
منابع مشابه
Commutative Local Rings of bounded module type
Let R be a local ring of bounded module type. It is shown that R is an almost maximal valuation ring if there exists a non-maximal prime ideal J such that R/J is an almost maximal valuation domain. We deduce from this that R is almost maximal if one of the following conditions is satisfied: R is a Q-algebra of Krull dimension ≤ 1 or the maximal ideal of R is the union of all non-maximal prime i...
متن کاملLocal rings of bounded module type are almost maximal valuation rings
It is shown that every commutative local ring of bounded module type is an almost maximal valuation ring. We say that an associative commutative unitary ring R is of bounded module type if there exists a positive integer n such that every finitely generated R-module is a direct sum of submodules generated by at most n elements. For instance, every Dedekind domain has bounded module type with bo...
متن کاملBoundedness versus Periodicity over Commutative Local Rings
Over commutative graded local artinian rings, examples are constructed of periodic modules of arbitrary minimal period and modules with bounded Betti numbers, which are not eventually periodic. They provide counterexamples to a conjecture of D. Eisenbud, that every module with bounded Betti numbers over a commutative local ring is eventually periodic of period 2 . It is proved however, that the...
متن کاملModule categories for group algebras over commutative rings
We develop a suitable version of the stable module category of a finite group G over an arbitrary commutative ring k. The purpose of the construction is to produce a compactly generated triangulated category whose compact objects are the finitely presented kG-modules. The main idea is to form a localisation of the usual version of the stable module category with respect to the filtered colimits...
متن کاملA class of Artinian local rings of homogeneous type
Let $I$ be an ideal in a regular local ring $(R,n)$, we will find bounds on the first and the last Betti numbers of $(A,m)=(R/I,n/I)$. if $A$ is an Artinian ring of the embedding codimension $h$, $I$ has the initial degree $t$ and $mu(m^t)=1$, we call $A$ a {it $t-$extended stretched local ring}. This class of local rings is a natural generalization of the class of stretched ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2001
ISSN: 0092-7872,1532-4125
DOI: 10.1081/agb-100001689